
NAG C Library Function Document

nag_zunglq (f08awc)

1 Purpose

nag_zunglq (f08awc) generates all or part of the complex unitary matrix Q from an LQ factorization
computed by nag_zgelqf (f08avc).

2 Specification

void nag_zunglq (Nag_OrderType order, Integer m, Integer n, Integer k, Complex a[],
Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zunglq (f08awc) is intended to be used after a call to nag_zgelqf (f08avc), which performs an LQ
factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary
reflectors.

This function may be used to generate Q explicitly as a square matrix, or to form only its leading rows.

Usually Q is determined from the LQ factorization of a p by n matrix A with p � n. The whole of Q
may be computed by:

nag_zunglq (order,n,n,p,&a,pda,tau,&fail)

(note that the array a must have at least n rows) or its leading p rows by:

nag_zunglq (order,p,n,p,&a,pda,tau,&fail)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of A;
thus nag_zgelqf (f08avc) followed by nag_zunglq (f08awc) can be used to orthogonalise the rows of A.

The information returned by the LQ factorization functions also yields the LQ factorization of the leading
k rows of A, where k < p. The unitary matrix arising from this factorization can be computed by:

nag_zunglq (order,n,n,k,&a,pda,tau,&fail)

or its leading k rows by:

nag_zunglq (order,k,n,k,&a,pda,tau,&fail)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix Q.

Constraint: m � 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08awc

[NP3645/7] f08awc.1



3: n – Integer Input

On entry: n, the number of columns of the matrix Q.

Constraint: n � m.

4: k – Integer Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: m � k � 0.

5: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgelqf
(f08avc).

On exit: the m by n matrix Q.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

7: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least maxð1; kÞ.
On entry: further details of the elementary reflectors, as returned by nag_zgelqf (f08avc).

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, n = hvaluei, m = hvaluei.
Constraint: n � m.

On entry, m = hvaluei, k = hvaluei.
Constraint: m � k � 0.

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

f08awc NAG C Library Manual

f08awc.2 [NP3645/7]



NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 16mnk� 8ðmþ nÞk2 þ 16
3
k3; when

m ¼ k, the number is approximately 8
3
m2ð3n�mÞ.

The real analogue of this function is nag_dorglq (f08ajc).

9 Example

To form the leading 4 rows of the unitary matrix Q from the LQ factorization of the matrix A, where

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i

�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

1
A

0
@ :

The rows of Q form an orthonormal basis for the space spanned by the rows of A.

9.1 Program Text

/* nag_zunglq (f08awc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
char *title=0;
Complex *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08awc

[NP3645/7] f08awc.3



order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08awc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
pda = m;

#else
pda = n;

#endif
tau_len = m;

/* Allocate memory */
if ( !(title = NAG_ALLOC(31, char)) ||

!(a = NAG_ALLOC(m * n, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08avc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Form the leading M rows of Q explicitly */
f08awc(order, m, n, m, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08awc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the leading M rows of Q only */
Vsprintf(title, "The leading %2ld rows of Q\n", m);
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

a, pda, Nag_BracketForm, "%7.4f", title,
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (title) NAG_FREE(title);
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);

f08awc NAG C Library Manual

f08awc.4 [NP3645/7]



return exit_status;
}

9.2 Program Data

f08awc Example Program Data
3 4 :Values of M and N

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

9.3 Program Results

f08awc Example Program Results

The leading 3 rows of Q

1 2 3 4
1 (-0.1258, 0.1618) (-0.2247, 0.3864) ( 0.3460, 0.2157) (-0.7099,-0.2966)
2 (-0.1163,-0.6380) (-0.3240, 0.4272) (-0.1995,-0.5009) (-0.0323,-0.0162)
3 (-0.4607, 0.1090) ( 0.2171,-0.4062) ( 0.2733,-0.6106) (-0.0994,-0.3261)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08awc

[NP3645/7] f08awc.5 (last)


	f08awc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



