f08 — Least-squares and Eigenvalue Problems (LAPACK) f08awc

NAG C Library Function Document

nag_zunglq (f08awc)

1 Purpose

nag_zunglq (f08awc) generates all or part of the complex unitary matrix) from an L) factorization
computed by nag_zgelqf (f08avc).

2 Specification

void nag_zunglq (Nag_OrderType order, Integer m, Integer n, Integer k, Complex a[],
Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zunglq (f08awc) is intended to be used after a call to nag zgelqf (f08avc), which performs an L@
factorization of a complex matrix A. The unitary matrix () is represented as a product of elementary
reflectors.

This function may be used to generate () explicitly as a square matrix, or to form only its leading rows.

Usually @ is determined from the L() factorization of a p by n matrix A with p < n. The whole of @
may be computed by:

nag_zunglg (order,n,n,p,&a,pda,tau,&fail)
(note that the array a must have at least n rows) or its leading p rows by:
nag_zunglqg (order,p,n,p,&a,pda,tau,&fail)

The rows of () returned by the last call form an orthonormal basis for the space spanned by the rows of A;
thus nag_zgelqf (f08avc) followed by nag_zunglq (f08awc) can be used to orthogonalise the rows of A.

The information returned by the L() factorization functions also yields the L() factorization of the leading
k rows of A, where k < p. The unitary matrix arising from this factorization can be computed by:

nag_zunglq (order,n,n,k,&a,pda,tau,&fail)
or its leading k rows by:

nag_zunglqg (order,k,n,k,&a,pda,tau,&fail)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix Q.

Constraint: m > 0.

[NP3645/7] f08awc. 1

f08awc NAG C Library Manual

3: n — Integer Input
On entry: n, the number of columns of the matrix Q.

Constraint: n > m.

4: k — Integer Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: m > k > 0.

5: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgelqf
(f08avc).

On exit: the m by n matrix Q.

6: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
7: tau[dim] — const Complex Input
Note: the dimension, dim, of the array tau must be at least max(1,Kk).

On entry: further details of the elementary reflectors, as returned by nag zgelqf (f08avc).

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT_2

On entry, n = (value), m = (value).
Constraint: n > m.

On entry, m = (value), k = (value).
Constraint: m > k > 0.

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

f08awe.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08awc

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix @) differs from an exactly unitary matrix by a matrix E such that
1E]l, = O(e),

where ¢ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 16mnk — 8(m + n)k? —|—13—6k:3; when
m = k, the number is approximately §m2(3n —m).

The real analogue of this function is nag_dorglq (f08ajc).

9 Example

To form the leading 4 rows of the unitary matrix) from the L factorization of the matrix A, where

0.28 —0.36¢ 0.50 —0.86¢ —0.77 — 0.48¢ 1.58 + 0.6617
A= -050-1.10; —-121+0.760 —0.32-0.24¢ —027—1.15¢
036 -0.512 —0.07+1.33¢ —0.7540.47; —0.08 4 1.01%

The rows of @) form an orthonormal basis for the space spanned by the rows of A.

9.1 Program Text

/* nag_zunglqg (f08awc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
char *title=0;
Complex *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)*pda + I - 1]

[NP3645/7] f08awe.3

f08awc

order = Nag_ColMajor;

#else

#define A(I,J) al[(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08awc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("%*["\n] ");

Vscanf ("$1d%1d%*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

tau_len = m;

/* Allocate memory */
if (!(title = NAG_ALLOC(31, char)) ||
!(a = NAG_ALLOC(m * n, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
}
Vscanf ("s*["\n] ");

/* Compute the LQ factorization of A */
fO8avc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8avc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Form the leading M rows of Q explicitly =*/
fO8awc(order, m, n, m, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8awc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print the leading M rows of Q only */
Vsprintf(title, "The leading %21d rows of Q\n", m);
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,
a, pda, Nag_BracketForm, "%7.4f", title,
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0o, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (title) NAG_FREE(title);
if (a) NAG_FREE (a);
if (tau) NAG_FREE(tau) ;

f08awc.4

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

return exit_status;

}

9.2 Program Data

f08awc Example Program Data
3 4
(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01)

9.3 Program Results

fO8awc Example Program Results

The leading 3 rows of Q

(-0.3240, 0.4272
(0.2171,-0.4062

2 (-0.1163,-0.6380
3 (-0.4607, 0.1090

1 2

1 (-0.1258, 0.1618) (-0.2247, 0.3864) (0.3460, 0.2157
))
))

(-0.1995,-0.5009
(0.2733,-0.6106

3
)
)
)

f08awc

:Values of M and N

:End of matrix A

4
(-0.7099,-0.2966)
(-0.0323,-0.0162)
(-0.0994,-0.3261)

[NP3645/7]

f08awc.5 (last)

	f08awc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

